Intracellular trafficking and gene expression of pH sensitive, artificially enveloped adenoviruses in vitro and in vivo

Recombinant adenovirus has shown great promise in gene therapy. Artificial envelopment of adenovirus within lipid bilayers has previously been shown to decrease the immunogenicity and hepatic affinity of naked Ad in vivo. Unfortunately, this also resulted in a significant reduction of gene expression, which we attributed to poor endosomal release of the Ad from its artificial lipid envelope. In this work, we explored the artificial envelopment of Ad within pH-sensitive bilayers and characterized this vector by TEM, AFM, dot blot, dynamic light scattering and zeta potential measurements. The artificially enveloped viral vectors exhibited good stability at physiological pH but immediately collapsed and released naked Ad virions at pH 5.5. This study is a step forward toward the engineering of functional, artificially-enveloped adenovirus vectors for gene transfer applications.